
www.elsevier.nl/locate/jnlabr/yjfls

Journal of Fluids and Structures 19 (2004) 251–275

Impact flows and loads on ship-deck structures

M. Grecoa,*, M. Landrinia, O.M. Faltinsenb

a INSEAN, The Italian Ship Model Basin, Via di Vallerano 139, 00128 Rome, Italy
bCentre for Ships and Ocean Structures, NTNU, Trondheim, Norway

Received 13 May 2003; accepted 10 December 2003

Abstract

The shipping of water on the deck of a vessel in head-sea conditions and zero-forward speed is investigated by

experimental and numerical means. Through the experimental observations the main stages of the fluid-dynamic

phenomenon are identified. For the considered conditions, water shipping initiates with water front overturning onto

the deck, entrapping air, and then flowing along the initially dry deck up to impacting against vertical superstructures.

Numerically, the water-on-deck phenomena are studied by considering a simplified two-dimensional flow problem. The

theoretical model relies on the assumption of inviscid fluid in irrotational motion. Through comparison against

experimental data, it is shown that the potential-flow model suffices to give a robust and efficient estimate of green-

water loads until large breaking phenomena, usually following impact events, are observed. A boundary element

method with piecewise-linear shape functions for geometry and boundary data is used for the numerical solution. The

fluid–structure interaction is studied by coupling the nonlinear potential flow model with a linear Euler beam to

represent a portion of the deck house under the action of the shipped water. The loading conditions related to violent

fluid impacts and air-cushion effects are discussed. Upon considering realistic parameters, the occurrence of critical

conditions for structural safety is discussed. The role of hydroelasticity is addressed in the case of fluid impacting

against a vertical wall.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The practical prediction of wave-induced ship motions and loads has reached a reliable degree of maturity since the

1970s, when the strip-theory codes became available (Salvesen et al., 1970). The need to estimate occurrence and

severity of dangerous events, such as the massive shipping of water on the deck of vessels (green water), is not of minor

importance but rational prediction tools are not yet available.

In the last decades, the research effort has been largely stressed in this field. Limiting ourselves to the case of

stationary structures, experimentally, fundamental features of the water shipping due to regular incoming waves on a

floating production storage and offloading (FPSO) unit (Ersdal and Kvitrud, 2000) have been identified by Buchner

(1995, 2002). Tests with different bow and stern shapes have been performed. Irregular incoming wave conditions were

considered in the experiments carried out by Stansberg and Karlsen (2001) and the evolution of the shipped water onto

the deck has been investigated. On the numerical side, Buchner and Cozijn (1997) analyzed the bow deck wetness for

moored ships, assuming a two-dimensional problem in the longitudinal ship direction. The fluid was assumed inviscid

and in irrotational motion and the problem was solved through a boundary element method with collocation points

inside the elements. They presented both numerical simulations and experiments for a simple prototype problem but no

comparison between simulations and measurements was presented. Numerical difficulties were documented concerning
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the evolution of the free surface-body contact point at the starting of the water shipping. Studies based on Navier–

Stokes equations coupled with VOF technique for treating the free surface are presented by Fekken et al. (1999) and

Kleefsman et al. (2002). The numerical method is applied to solve an ‘‘equivalent’’ dam-breaking problem whose

characteristics are determined by tuning with the studied water shipping events in the case of a FPSO. This means that

the coupling between in deck-out deck flows is not accounted for.

Our recent research activity, briefly summarized in the experimental work by Barcellona et al. (2003), is mainly aimed

to a fuller understanding of the fluid dynamics involved in water-on-deck phenomena, and the ability to predict and

control water-shipping events. In this paper, we focus our attention on the hydrodynamic loads and structural

consequences connected with the water invading and flowing along the deck, and finally impacting against the deck

house in the bow region of a ship with zero forward speed and restrained from moving, subjected to head-incoming

waves.

Although the presently neglected ship motions affect the phenomenon, and further investigations are needed to deal

the general case of a ship sailing through waves, the present case is of practical relevance to understand green-water

events on FPSO units since they are moored ships used as oil platforms and therefore operating at zero-mean forward

speed. Further, FPSO ships are weather-vaning, therefore head sea represents the most severe condition in terms of

water-shipping occurrence. Moreover, while for smaller vessels the water-on-deck concern is mainly related to ship

stability (e.g. the capsizing for fishing vessels), the safety of structures and superstructures along the deck, together with

operatability on board, represent the main issues when dealing with FPSOs. In this framework, the present analysis is of

relevant practical content.

The analysis is based on a synergic combination of experimental observations with numerical modelling. In the first

part, a preliminary global understanding of the phenomenon is presented through experimental investigations. These

allow to identify the main stages of the flow-field evolution. Each of these is of concern from a structural point of view,

and will be further investigated in the second part of the paper, after the numerical modelling has been presented. Upon

assuming realistic parameters for the ship structure, we define the criticality of the different flow stages and the

reliability of the mathematical model to deal with. Finally, the role of hydroelasticity during deck-house impacts after

water shipping is addressed.

2. Experimental background

2.1. Three-dimensional experiments

An experimental investigation on three different models including flow visualization, pressure pattern on the wetted

deck and impact force on a deck-like structure is presented by Barcellona et al. (2003). Two mathematical hull forms

and a model of the ESSO-Osaka tanker have been considered. Here, we report a few new flow visualizations about the

model of the ESSO-Osaka tanker, in head-sea conditions, without forward speed and restrained from moving. The aim

is highlighting the main flow features to the purpose of later discussion on the structural implications.

The adopted model of the ESSO-Osaka tanker has draft D ¼ 0:284 m; length between the perpendiculars L ¼ 4:44 m
and beam B ¼ 0:74 m: The tests have been carried out at the INSEAN Towing Tank 2 (length 220 m; breadth 9 m and

depth 3:6 m).
The main incident wave parameters have been determined by considering FPSO ships and their usual operational

conditions. In particular, FPSO water-on-deck accidents in the North Sea documented that the most interesting

wavelengths are of order of the ship length. Several casualties occurred during full-loaded conditions (Ersdal and

Kvitrud, 2000) when the effective freeboard is smaller than the nominal value. Therefore, to have realistic water heights

relative to the deck for representative design conditions, the upper portion of the bow has a reduced freeboard,

f ¼ 0:064 m; resulting in the nondimensional parameters D=LC0:064; B=LC0:166 and f =LC0:015: The uppermost
portion of the hull and the bow region of the deck have been made by transparent material to permit visualizations of

the water running up along the bow, entering the deck and flowing against a vertical plexiglas plate to mimic a deck-

house wall. A video camera has been used in combination with a mirror placed under the ship deck. Images are

recorded with a frame rate of 30 Hz: In real cases, water shipping may be due either to a single large wave, or to the

cumulative effect of a small number of events associated with wave groups approaching the ship. In the latter case,

the first event is not necessarily the most severe one. In the present tests, water on deck occurs as a single event due to

the ship interaction with the wave packet. In this way, we also avoid disturbances due to wave reflections from the tank

walls. The incident wave packet results from the focusing of several wave components generated with suitable phase

relationships, Rappi and Melville (1990). The wave spectrum and the focusing point along the tank represent the input

data. In the present case, each component has the same amplitude a: A characteristic steepness kca of the wave packet
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can be defined by using the wavenumber kc associated with the mean frequency fc of the spectrum. In tests here

reported, we have chosen fc ¼ 0:6 Hz and the frequency bandwidth Df ¼ 0:4 Hz; respectively. This gives a

characteristic wavelength lc ¼ 2pkc ¼ 4:33 mC0:98L: The shortest and the longest wave components correspond to

C0:5L and toC2:6L; respectively. The focusing technique implemented is described by Barcellona et al. (2003). In that
work, the wave steepness parameter kca has been varied between 0.125 and 0.25. Here, we discuss only the case

kca ¼ 0:15:
Fig. 1 shows the interaction of the wave packet approaching the ship bow from left to right. After the water exceeded

the freeboard, it enters the deck in a nonuniform manner because of the three-dimensionality of the hull form. In

particular, the water initially plunges onto the deck at the fore portion of the bow (first frame). As time goes on, the

water shipped in that region flows along the deck, while the freeboard is also exceeded along the ship sides (second

frame). The maximum relative water height is reached and the forward-most portion of the ship bow appears totally

submerged (third frame). The water flowing on the deck finally impacts against the vertical wall in a complex fashion,

starting from the lateral sides, while the shipping of water slows down and ends (fourth frame).

The analysis of top- and bottom-view camera recordings highlights the formation of air entrapment during the early

stages of the water shipping and allows for a more complete interpretation of the fluid-flow evolution during the initial

stage. An example is given in Fig. 2. The perspective error connected with the use of a mirror-video camera combined

system has not been corrected in these images. The time increases from left to right and from top to bottom.

When the water exceeds the freeboard, the fluid front plunges onto the deck, forming the air cavity. At the beginning,

near the fore portion of the deck, a circular-shaped structure is observed (first frame), increasing as the time increases.

In the second snapshot, this structure is characterized by an inner-darker region, where the deck has been already

wetted, and an outer-lighter ring, where air is present. In the same frame, two tubular cavities can be observed along the

bow sides, and have been colored in yellow to make them more evident. These are nonuniform, with thickness slowly

reducing from the ship center-line on.

As the wave packet propagates downstream the hull, ‘‘fresh’’ water enters the deck along the bow sides, moving

initially inward. Because of the symmetry of the phenomenon, the lateral water fronts approach each other in proximity

of the ship center-line and are diverted outward by their mutual interaction. Result of this interaction is also the

formation and growth of an inner blunt fluid structure. As time passes, this structure is fed by the water shipped

laterally and moves along the deck toward the deck house. The last frame shows the structure of the water front before

the impact against the vertical wall. It is worth stressing the nonuniform distribution of water height, with a maximum

value occurring around the ship center-line.

The shipped water eventually impacts against the deck house-like structure, as shown in Fig. 3. The interaction starts

from the lateral sides (cf. last frame of Fig. 1), and becomes more vigorous when the innermost portions of the water
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Fig. 1. Water shipping on ESSO-Osaka model induced by a wave packet (kca ¼ 0:15 and lc ¼ 4:33 m). Side view. The time increases
from left to right and from top to bottom, with a time interval of 0:12 s:
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Fig. 2. Water shipping on ESSO-Osaka model induced by a wave packet (kca ¼ 0:15 and lc ¼ 4:33 m). Bottom view. The time

increases from left to right and from top to bottom, with a time interval ofC0:033 s: The water on deck starts in the form of a plunging

wave from the fore portion of the bow (top-left), where the local wave elevation is higher. Then the freeboard is progressively exceeded

along the ship side (top-right). The plunging wave entering the deck impacts with it and causes the formation of a cavity structure along

the deck sides. Then, a water flow along the deck is generated with increasing velocity. This is characterized by a faster central tongue

of fluid becoming wider as the time increases. Under the weight of the newly water invading the deck and partially convected by the

main flow along the deck, the cavity collapses into bubbles. The visible horizontal black lines in the first four frames are the bottom-

mirror reflection of the lines drawn on a panel in front of the bow and have not physical meaning.

Fig. 3. Interaction of the shipped water with the vertical wall.
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front, characterized by higher water height, reach the wall. After the maximum run up is reached, the fluid motion

reverses backward, overturning onto the deck.

2.2. Two-dimensional laboratory tests

A clearer understanding of the water-shipping dynamics has been gained through two-dimensional water-on-deck

laboratory tests, performed in the wave flume (length 13 m; depth 1 m and width 0:6 m) at the NTNU Department of

Marine Hydrodynamics (Fig. 4). In this case, the flow field is simpler than that observed in the three-dimensional

model-tests recalled before and therefore better suited for guiding and validating the numerical method discussed in the

following. In the experiments, incoming waves are generated by a flap wave-maker. The body parameters here

considered are: draft D ¼ 0:2 m; length L ¼ 1:5 m; freeboard f ¼ 0:05 m: The bottom corner at the model was rounded

with a radius of curvature 0:08 m to avoid significant vortex shedding. Body motions are restrained. Since the generated

wave system is highly transient, with the first crest generally steeper than the following ones, we decided to focus our

study on the first water-shipping event.

The fundamental stages of the water shipping and the interaction with the deck first, and with the superstructure then

are described in Figs. 5–7.

In particular, Fig. 5 reports the enlarged view of the water front entering the deck. The shipping of the fluid initiates

with water plunging directly onto the deck, cf. the top-left frame. This is similar as observed in the three-dimensional

experiments. At this stage, high impact pressures are expected. After the impact, a cavity entrapping air is formed, as

shown in the top-right and following frames. The changes of the cavity volume due to the motion of the surrounding

fluid determine time-varying loads on the deck. This phase of the fluid–structure interaction may damage the deck at

least if the air in the cavity cannot escape. The latter occurs more easily in three-dimensional conditions rather than in

the two-dimensional flow field here considered.

After a time short with respect to the duration of the entire water-shipping, the gross features of the flow field

resemble those originated after the breaking of a dam, as shown in Fig. 6. Namely, a tongue of fluid develops along the

deck, without evidence of overturning of the water front. Therefore, the gross fluid dynamics is rather simple, with loads

practically hydrostatic in proximity of the water front. In this context, an additional important contribution to local

loads would be given by ship motions, though not allowed in our experiments. Actually, numerical results show that

there are important interactions between the flow on the deck and the flow field exterior to the vessel. This limits the

similarity with dam-break flows and the practical possibility of using shallow-water models (Greco, 2001).

Finally, the impact against the vertical structure is observed (bottom frames in Fig. 6). In the following evolution, cf.

Fig. 7, the fluid rises rapidly along the vertical wall. The fluid run up is slowed down by the action of the gravity, and the

water front thickens. After the maximum run up has been reached, the water collapses downward, and a backward

overturning is observed.

3. Two-dimensional numerical modelling

Further physical insight is gained by the numerical simulation of the previously described two-dimensional wave–

flume experimental conditions. The physical assumptions are discussed and the corresponding mathematical problem is

then stated. At first the model is described in the rigid-body case. Then, the fluid–structure coupling to account for

hydroelastic effects during the impact is discussed.

3.1. General assumptions and statement of the mathematical problem

In practical cases, the Reynolds number of the flow is high. Therefore, for unseparated flows, the vorticity is

concentrated in the thin boundary layer at the body boundary, and a potential-flow model can be used to quantitatively

describe the main features of the flow field, including the wave evolution around the hull and the induced pressure

distribution. Boundary-layer effects may be relevant also in case of thin fluid layers on solid boundaries, as in case of

the water front propagating on the deck. Moreover, the edge of the ship deck may induce separation and large vortex

shedding. In the present analysis, such phenomena are a priori neglected. In general, surface-tension effects are

negligible because of the relatively large spatial scales involved in practical cases. However, high curvature of the free

surface may exist at the body-free surface intersection and in plunging waves, and there surface tension may be relevant.

With these premises, a potential-flow model is adopted and the ‘‘heavy’’ water-on-deck is analyzed by fully retaining

nonlinearities associated with the motion of the fluid boundaries.
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We consider the problem sketched in Fig. 8, where the fluid domain OðtÞ is bounded by the free surface @OFS ; the
wetted surface of a rigid body @OBO; and the outer surface @Oouter formed by the upstream portion containing the

instantaneous wetted surface of the wave-maker and a straight horizontal bottom portion. The downstream

longitudinal extension of the domain is taken large enough so that the fluid disturbance can be neglected, at least for

finite time. The artificial dissipation of outgoing wave signals is discussed later. In general, the boundary @O of the fluid

domain O varies with time.

We assume an incompressible and inviscid fluid in irrotational motion. A potential-flow model is therefore

applicable. The velocity potential jðP; tÞ satisfies the Laplace equation

r2 j ¼ 0 ð1Þ

everywhere in the fluid domain, and the fluid velocity is u ¼ rj:
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Fig. 4. Two-dimensional laboratory experiments: sketch of the set up and adopted nomenclature. Lengths are not in natural scale.

Fig. 5. Two-dimensional laboratory experiments (l=D ¼ 10:1; H=D ¼ 0:808): initial stages of the water shipping. The water front

plunges onto the deck forming an air pocket which is squeezed and stretched downstream by the main flow. Time increases from left to

right and from top to bottom.
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Fig. 7. Two-dimensional laboratory experiments (l=D ¼ 10:1; H=D ¼ 0:808): late evolution of the impact against the vertical

superstructure. After the maximum run-up the water plunges backward onto the deck.

Fig. 6. Two-dimensional laboratory experiments (l=D ¼ 10:1; H=D ¼ 0:808): late stages of the water shipping. A dam break-type flow

develops along the deck. The water front eventually hits the vertical superstructure. Time increases from left to right and from top to

bottom.

Fig. 8. Sketch of the numerical two-dimensional problem.
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3.1.1. Conditions at the free surface

The free surface configuration and the velocity potential on the free surface at any time instant have to be found as a

part of the numerical solution. This is achieved by enforcing the kinematic and dynamic conditions along this boundary

portion, in combination with other boundary conditions, initial conditions and Laplace equation.

In particular, fluid particles cannot cross the free surface and, upon neglecting surface-tension effects, the pressure p

at the free surface is balanced by the ambient pressure pa; which is assumed constant. Therefore, through the Bernoulli

equation and by using a Lagrangian description, we can write the free-surface conditions as

DP

Dt
¼ rj;

Dj
Dt

¼
1

2
jrjj2 � gZ�

pa

r
; 8t; 8PA@OFS ; ð2Þ

where P is the location of a free-surface point, Z is the corresponding wave elevation, and D=Dt ¼ @=@t þrj 	 r
is the total, or material, derivative. Eqs. (2) are well known and state that the free surface is made by fluid particles

moving with the fluid velocity rj and carrying a value of the potential j which evolves according to the second

equation.

3.1.2. Condition at rigid boundary

Fluid particles cannot cross the body boundary, and the corresponding kinematic condition reads

@j
@n

¼ VP 	 n 8t; 8PA@O=@OFS ; ð3Þ

where n is the unit normal vector to the surface assumed pointing out of the fluid domain and VP is the velocity of a

point along the surface. In the considered cases, the body velocity is either zero or known a priori.

3.1.3. Pressure and hydrodynamic loads

The pressure can be computed by the Bernoulli equation,

p ¼ pe � r
@j
@t

þ
1

2
jrjj2 þ gz

� �
ð4Þ

and the force follows by direct pressure integration along surfaces of interest. The numerical evaluation of rate-of-

change of the velocity potential @j=@t in (4) will be described later.

3.2. Numerical solution

We adopt the mixed Eulerian–Lagrangian method (Ogilvie, 1967; Longuett-Higgins and Cokelet, 1976; Faltinsen,

1977). Let us assume that, at a given instant of time t0; the boundary geometry @O is known together with the velocity

potential along the free surface, and the component of the velocity normal to impermeable boundaries. The problem is

then solved by the following two-step procedure:

(i) A boundary value problem (b.v.p.) for the Laplace equation can be stated as

r2j ¼ 0 8PAO;

j ¼ f ðPÞ 8PA@OD;

@j
@n

¼ gðPÞ 8PA@ON: ð5Þ

In general, the Dirichlet boundary @OD and the Neumann boundary @ON are only a subset of the domain

boundary, since along some parts of @O both j and its normal derivative can be known. In the present case, the

portion @Oouter,@OBO of the boundary is of Neumann type, the free surface is a Dirichlet-type boundary and far

downstream the body both j and its normal gradient are assumed vanishingly small.

By solving the b.v.p. (5), we determine the fluid velocity, and (5) can be referred to as the ‘‘kinetic problem’’. This

is also said to be the ‘‘Eulerian step’’ of the procedure because problem (5) is solved for a frozen configuration of

the flow field.

As we will discuss later, at this stage the term @j=@t; needed for the pressure evaluation, can also be calculated.

(ii) The kinematic and dynamic conditions giving, respectively, the evolution of the free-surface geometry and of the

free-surface velocity potential can be stepped forward in time. If a Lagrangian formulation for the free surface is

used this step can be properly defined as the ‘‘Lagrangian step’’ of the procedure.

The pressure along the instantaneous wetted surface of the body can be evaluated and the body motions, if not

restrained, can be calculated.
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This provides new values for the boundary data along the Dirichlet and the Neumann boundaries, and the

procedure can be repeated at the new time instant from Step (i) above.

3.2.1. Kinetic problem

The kinetic problem (5) is recast in terms of boundary-integral equations, and solved by a boundary-element method

(BEM). Features and drawbacks of using boundary-integral equations for free-surface flows have been discussed at

length by many authors (see e.g. Yeung, 1982). We only mention that the simplicity of handling highly distorted

configurations such those appearing during water shipping, formation of plunging waves, and impact against structures

gives a decisive advantage over discretization-field methods, where a grid covering the whole fluid domain is required.

On the other hand, the method cannot be applied to deal with the post-breaking evolution.

The necessary integral equations are obtained by using the Green’s third identity:

Z
@O

j
@G

@nQ

�
@j
@nQ

G

� �
dcQ ¼

2pjðPÞ; PAO;

0; Pe@O,O;

yðPÞjðPÞ; PA@O:

8><
>: ð6Þ

In (6), Q is a point on the domain boundary, nQ is the unit vector normal to the boundary and pointing out of the fluid

domain, and GðP;QÞ ¼ lnjP � Qj is the fundamental solution of the Laplace equation in the two-dimensional space R2:
Finally, y is the inner angle (relative to the fluid domain) at point P along the boundary.

The integral representation (6) gives the velocity potential within the fluid domain, once j and @j=@n are known

along the boundary. Conversely, for points P on the boundary, (6) gives a compatibility condition on the boundary

data. In particular, if only some of them are known we can write integral equations to determine the remaining

unknown boundary data. In our case, we deal with boundary portions characterized by Dirichlet (free surface),

Neumann (rigid bodies) or Robin (elastic bodies) conditions. The obtained integral equations are then discretized by

dividing the boundary portions in a finite number of elements. This leads to a system of linear algebraic equations.

More in detail, in the present implementation we adopt a panel method with piecewise-linear shape functions both for

geometry and for boundary data, with collocation points at the edges of each element. This was preferred to higher-

order schemes, e.g. Landrini et al. (1999), which may lead to numerical difficulties at the body-free surface intersection

point. On the other hand, a lower-order method requires a finer discretization in regions with high curvature of the

boundary. An accurate tracking of the free boundary is crucial in areas with high free-surface curvature, in particular to

satisfy fluid-mass conservation. During the simulation, this has been achieved by inserting dynamically new points

where appropriate.

Continuity of the velocity potential is assumed at those points where the free surface meets a solid boundary. Though

no rigorous justification is available, this procedure gives convergence of the numerical results under grid refinement,

Dommermuth and Yue (1987). Occasionally, when the contact angle becomes too small, numerical problems still may

occur and the jet-like flow created during a water-entry phase is partially cut (Zhao and Faltinsen, 1993).

We remark that in a fully nonlinear simulation both the known terms and the matrix coefficients of the algebraic

equations system have to be evaluated each time the geometry and the boundary data change.

Once the system has been solved, j and its normal derivative become available along the whole boundary. The

tangential velocity @j=@t along @O (s is the unit vector tangent to the boundary) is determined by using finite-difference

operators. The velocity is then used for the Lagrangian tracking of the free surface, as described in Section 3.2.3.

3.2.2. Evaluation of @j=@t

The evaluation of the pressure along the body-wetted surface @OBO requires the rate-of-change @j=@t of the velocity

potential. However, with moving boundaries (free surface and moving body boundary), the Eulerian derivative

@jðP; tÞ=@t is not even defined because the point P on the considered boundary is changing in time. Therefore, some

practical difficulties are expected.

Cointe (1989) observed that @j=@t is solution of the Laplace equation with a Dirichlet condition on the free surface

following from the Bernoulli equation and a Neumann condition on the body boundary involving high-order

derivatives of the fluid velocity along the body contour. The problem is formally equivalent to the kinetic problem for j
discussed above and the computation of @j=@t by BEM does not change significantly the computational effort.

Moreover, in the present case, the boundary condition on the rigid boundaries reduces to a simple homogeneous

condition.
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3.2.3. Time integration

A standard fourth-order Runge–Kutta scheme is adopted to step forward in time the evolution equations associated

with the problem. This method represents a good compromise between accuracy and computational costs. In particular,

by a linear stability analysis (Colicchio and Landrini, 2003), it can be seen that the scheme becomes unstable only by

using very large time steps Dt; which is never the case because the tracking of the physical dynamics of water shipping

limits more severely the magnitude of Dt: Finally, the method results to be slightly dissipative. The dissipation rate

decreases as the time step decreases, and for the global time scales here analyzed (of the order of few periods of the

incoming wave) this is negligible.

The implementation details of the scheme are well known. In particular, it requires the solution of four kinetic

problems for each physical time step due to the (fictitious) auxiliary intermediate time instants. For a linearized

problem, this procedure would be equivalent to a fourth-order Taylor expansion in time with an error of O (Dt5).

Though less demanding schemes are conceivable, we adopted the described scheme because of the simplicity in

changing dynamically the time step. This was found crucial to keep under control the accuracy of the solution during

the development of jet flows, impacts, and breaking waves.

3.2.4. Absorbing boundary conditions

We will study water-on-deck induced by head-sea regular waves generated by a given motion of a wave-maker. The

wave disturbances transmitted past the body may reach the edge of the computational domain within a time-scale

smaller than that needed by the simulation. This can cause unphysical reflections and hamper the results.

To prevent this problem, a damping region is placed in proximity of the boundary domain downstream the body.

This is achieved by introducing damping terms proportional to the elevation Z and the potential j in the free-surface

conditions (Israeli and Orszag, 1989; Cointe, 1989; Cl!ement, 1996), i.e.

DP

Dt
¼ rj� nðPÞZez;

Dj
Dt

¼
1

2
jrjj2 � gZ� nðPÞj; 8t; 8PA@OFS ; ð7Þ

where ez is the unit vector along the z-axis.

To avoid reflections during the transition from the free-surface conditions (2) to the modified ones (7), the damping

coefficient nðPÞ starts from zero, smoothly increases within the free-surface portion L1 and then constantly keeps the

maximum value nmax in the ending portion L2: In particular, we adopted the form

nðPÞ ¼

0 8PA@OFS=L1,L2;

nmax �2
l

l1

� �3

þ3
l

l1

� �2
 !

8PAL1;

nmax 8PAL2;

8>>>><
>>>>:

ð8Þ

where c is the horizontal coordinate of PA@OFS from the beginning of the damping layer (cf. Fig. 9).

The length l1 þ l2 of the damping layer and the value of nmax have to be empirically determined. In this work, l1 has

been chosen at least equal to twice the incoming wave length l; while l2 could be much larger to better damp out long-

wave components. To the latter purpose, some stretching of the free-surface panels is introduced to obtain a stronger

reduction of these long-wave components.

Finally, in the physical wave flume an automatic control system adjusts the wave-maker motion to absorb reflected

waves and to ensure the desired wave conditions. We used the actual wave-maker motion during the experiments to
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Fig. 9. Sketch of the numerical damping region.
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drive our numerical wave-maker and absorption of reflected waves from the ship to the same degree as in the

experiments is expected also in the simulations.

3.3. Modelling of the flow field during water shipping

A crucial aspect of the water-on-deck problem is represented by the prediction of the shipping occurrence. The

behavior of the fluid flow when freeboard is exceeded represents a physical interesting and still rather unclear stage of

the whole event. Therefore, numerical modelling has to rely upon experimental observations in the hope to grasp

correctly the physics. As discussed, two-dimensional experiments have shown that water shipping initiates with the

water front plunging onto the deck. The spatial scale involved is small (compared with the ship draft), and the time scale

of the impact short with respect to the characteristic wave period. After the impact occurred, on spatial scales large with

respect to the impact region, water propagation resembles that observed in dam break-type flows. On this ground, we

devised two different local treatments to model the numerical solution at the edge of the deck.

3.3.1. Continuous Kutta-like condition

The very initial stage is modelled as shown in the left plot of Fig. 10. A Kutta-like condition similar to the Kutta

condition applied in foil theory is enforced at the edge of the deck, corresponding here to the foil trailing edge. Such

condition specifies that there is no cross-flow at the trailing edge. This implies that the flow leaves the foil surface

tangentially at the trailing edge. By transferring this definition to the problem of interest, this means that we enforce the

fluid to leave tangentially the bow edge during the whole evolution. Therefore, we named this as a ‘‘continuous’’ Kutta-

like condition. Numerically this has been applied as follows. When the freeboard is reached, the contact point (CP) is

left to proceed tangentially to the bow stem, and a new element is created with length @j=@tDt; s being the unit vector

tangent to the bow stem, and carrying the current value of the potential at CP, which is treated as unknown in the

integral equation. During the evolution, a new free-surface panel is created each time the size of the element nearest to

the bow edge exceeds the mean size of the free-surface panels near the bow. Numerical simulations obtained by

enforcing the continuous Kutta-like condition demonstrated to be successful in describing the formation of the water

plunging onto the deck and its evolution until the water impact with the deck. Present method, based on a Boundary
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Fig. 10. Left: ‘‘Continuous’’ Kutta-like condition at the edge of the deck. Sketch (top plot) and example from numerical simulations

(for a vertical bow, bottom plot) of the free surface evolution near the edge of the deck. The free surface configurations are enumerated

as the time increases. Right: ‘‘Initial’’ Kutta-like condition at the edge of the deck. Sketch (top plot) and example from numerical

simulations (for a vertical bow, bottom plot) of the free surface evolution near the edge of the deck. The free surface configurations are

enumerated as the time increases.
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Element Method, cannot handle the post-impact evolution and the numerical simulation is stopped when the free

surface hits the solid boundary.

In the experiments we observed that, after the initial impact, the long-time evolution of the flow follows a dam break-

like pattern. To study the water-on-deck phenomena occurring on this larger time scale, we decided to relax the

condition at the edge of the deck applying what we named as the ‘‘initial’’ Kutta-like condition.

3.3.2. ‘‘Initial’’ Kutta-like condition

As sketched in the right plot of Fig. 10, when water reaches the instantaneous freeboard the fluid is enforced to leave

tangentially the bow, thus a Kutta-like condition is initially applied. Once the freeboard is exceeded, the Kutta-like

condition is not enforced anymore and the free-surface velocity relative to the ship determines whether the deck will be

wetted or the water will be diverted in the opposite direction. If locally the relative free-surface velocity is favorable to

the water entering the ship deck the fluid particle closest to the deck is allowed to move tangentially along it, causing

deck wetness.

We verified a posteriori that this treatment allows a good prediction of water-on-deck occurrence, and captures

efficiently the subsequent flow-field evolution along the deck.

To study the water shipping phenomena by enforcing the same (continuous Kutta-like) condition at the edge of the

deck during the whole flow evolution, we need to handle the initial water-impact with the deck. This can be made for

example by matching the numerical solution with a suitable local high-speed jet-flow solution. In this way it is also

possible to study the evolution of the air cavity caused by the impact, before the cavity collapse in bubbles. This

approach has not been presently attempted, yet.

3.4. Modelling of the hydroelastic problem

In some circumstances, the motion of the body boundary due to elastic deformations takes place on spatial scales and

frequencies suitable to significantly influence the fluid motion. In this context, it is fundamental that the time scale of the

considered fluid motion (loading time) is comparable with the dominant structural elastic natural periods, which in

practice means the highest ones. When this occurs, the fluid-dynamic problem and the structural problem are coupled

and have to be simultaneously solved (hydroelastic problem).

In the present context, when the shipped water hits structures along the deck, elastic deformations may have

importance and influence the flow conditions. To assess the role of hydroelasticity, we need to formulate a hydroelastic

model, that is the structural and fluid-dynamic problems have to be solved simultaneously.

The interaction of the shipped water impacting against a portion of the deck is studied in Section 4.3 by coupling the

nonlinear potential-flow model with a linear Euler-beam model. The use of a rather simple structural model simplifies

the resulting numerical modelling and the analysis. For a more realistic treatment, one should use more complicated

structural models. However, main focus is to assess the importance of hydroelasticity for a stiffened flat steel panel, and

the beam model adopted gives a satisfactory approximation for the considered structure. Small beam deformations are

assumed and, consistently with the Euler-beam model, rotations of the beam sections are neglected. Finally, structural

damping is assumed negligible. This assumption is proper for the lower natural modes which mostly matter in practice.

On this ground, the adopted beam equation is

m
@2w

@t2
þ EI

@4w

@x4
¼ p x;w;

@w

@t
;
@2w

@t2

� �

¼ � r
1

2
jrjj2 þ

@j
@t

� g 	 P

� �
; ð9Þ

where g is the gravity acceleration, P is a point on the deformed beam, m is the structural mass per unit length, EI is the

beam bending stiffness, where E is the Young modulus and I the area moment of inertia per unit width of the beam

about the neutral axis. Specification of constraints at the beam edges provides two boundary conditions at each of

them. In the right-hand side, it is emphasized that the deformation w is forced by the fluid pressure p which depends,

through the Bernoulli equation, on the location x along the beam, and on the deformation and its first and second time
derivatives.

Suppose that, at a given instant of time, the beam geometry w and the deformation velocity @w=@t are known,

together with the other suitable boundary data along free and rigid surfaces. Then the b.v.p. for the velocity potential j
can be solved by imposing the no-penetration condition:

@j
@n

¼
@w

@t
ð10Þ
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along the wetted portion of the beam, and the already stated conditions on the remaining boundary portions. The fluid

velocity rj can then be evaluated, in particular, along the beam.

To evaluate the hydrodynamic pressure forcing the beam @j=@t is also needed. Since @j=@t is a harmonic function, it

can be found by solving a suitable b.v.p. for the Laplace equation r2½@j=@t� ¼ 0: The boundary condition on free and

rigid boundaries can be derived in a similar way as already discussed. On the wetted portion of the beam, the boundary

condition has the less common form of a nonhomogeneous Robin condition:

@

@n

@j
@t

� �
þ

r
m

@j
@t

¼ a1ðxÞ þ a2ðxÞ: ð11Þ

Here r is the water density, m the structural mass per unit length and unit width of the beam and a1 and a2 are known

functions of the longitudinal coordinate x given by

a1 ¼
@w

@t

@2j
@t2

�
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@t

@2w

@x@t
;
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m
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� �
: ð12Þ

Eq. (11) follows by specifying that the acceleration of particles lying along the beam in the normal direction equals that

of beam points, that is

n 	Du=Dt ¼ @2w=@t2: ð13Þ

Here the assumption of linear beam theory has been used and higher-order terms with respect to the structural

deformations have been neglected. By developing the left-hand side of Eq. (13) and introducing n and s as, respectively,

unit normal and tangential vectors to the beam, we have

n 	
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Condition (11) is finally obtained, under the approximation of linear beam theory, once introduced in the last

expression condition (10) for @j=@n; the Laplace equation for @2j=@n2; and the beam equation (9) for @2w=@t2:
We observe that the b.v.p. for @j=@t is not formally the same as the problem for j: A second set of integral equations

has therefore to be solved, increasing the computational effort.

For the spatial discretization of (9), the transverse deformation wðx; tÞ is approximated as a (truncated) series

wðx; tÞC
XN

j¼1

zjðtÞCjðxÞ ð14Þ

in terms of N dry modes CjðxÞ of the beam, which can be analytically determined according to the specific boundary

conditions at the beam ends. The corresponding modal amplitudes zjðtÞ are the unknowns of the problem. By projecting
Eq. (9) along the basis fCjg; we obtain a set of ordinary differential equations for the time evolution of zjðtÞ: The
equations are hydrodynamically coupled each other, i.e. through

R
pðx;w; :::ÞCjðxÞ dx:

Once the fluid pressure is known, fluid motion and structural deformation can be updated in time. The wetted portion

of the beam at the next time instant is directly obtained once the evolution of the free surface-structure intersection

point has been evaluated.

A procedure, similar to the one discussed above, has been introduced by Tanizawa (1999) to analyze the impact of a

flexible body with the free surface.

In spite of the linearized structural model, in the computations the beam geometry is actually deformed according to

wðx; tÞ since it was found numerically preferable to satisfy the boundary condition on the instantaneous beam position.

This has been made since in the fluid-dynamic problem the free surface evolution is nonlinearly analyzed. Using the

instantaneous beam position allowed for a more stable prediction of the beam-free surface intersection, which can be

difficult during the run-up stage when the contact angle can be very small.

No stability problems have been encountered for the time evolution of the beam equation (9) despite the added mass

terms (i.e. terms depending on the acceleration) are not identified in the right-hand side and moved in the left-hand side.

This is due to the use of an explicit fluid–structure coupling by means of the beam Robin boundary condition for @j=@t:
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Differently, stability problems have been documented in the case of hydroelastic analyses using iterative approaches to

enforce the fluid–structure coupling when the added masses terms are left on the right-hand side of Eq. (9), see e.g.

Kv(alsvold (1994).

4. Analysis of the fluid–structure interaction

In the following, the structural implications of the fluid–structure interaction associated with the shipping of water

are investigated. To the purpose, both numerical and experimental data will be used in a combined fashion.

4.1. Initial plunging phase and deck impact

Fig. 11 shows the initial plunging phase observed in the two-dimensional experimental investigation. Time increases

from left to right and from top to bottom. For the same case, results (red lines) obtained by the described potential-flow

model are superimposed. In particular, waves approach the obstacle from left to right. Some minor uncertainties in the

comparison are introduced by wetting effects of the water on the lateral wall of the wave flume and to the angle of

perspective. Nevertheless, the numerical simulations are in good agreement with the experimental visualizations.

Further, despite surface-tension effects have not been modelled, the good comparison suggests a limited role of surface

tension in determining the initial volume of the entrapped cavity, at least for the wave and the geometric parameters

here considered.

The numerical free-surface configuration (solid line) at the impact instant is shown in the bottom-right plot of the

same figure. It is also demonstrated that close to the separation point at the bow, the cavity profile is well fitted by the

local solution [line with circles, cf. Zhao et al., 1997]. This approximation is obtained by neglecting gravity effects within

the potential-flow approximation. The origin of the local coordinate system ðx1; z1Þ is at the edge of the deck, with the
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Fig. 11. Initial stages of water shipping on a two-dimensional structure caused by waves with l=D ¼ 10:1 and H=D ¼ 0:808: The draft
of the model is D ¼ 0:198 m: The numerical results (red lines) are compared with experimental visualizations. The time interval

between images is 0:04 s: Bottom right: the numerical solution (solid line) is compared with a local solution (line with circles) and with a

free-falling trajectory (line with squares). Coordinates ðx; zÞ have origin placed horizontally at the body center and vertically at the

mean water level.
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x1-axis along the deck and the z1-axis vertically upward. The coefficient CðtÞ is a time varying parameter which depends
on the complete flow, and therefore cannot be determined by a local analysis. The tip of the jet impacting against the

deck agrees well with a parabolic contour (line with black squares), which would be the path of a free-falling fluid

particle.

Therefore, at the beginning of the water shipping fluid particles undergo three stages of evolution: (i) the fluid is

diverted vertically upward, with negligible effects of the gravity, (ii) an intermediate phase with almost horizontal

motion where gravity and pressure gradients are comparable, and (iii) a free-falling evolution up to the impact against

the underlying deck.

Considering the initial stage of water shipping from the structural loading point of view, the plunging phase is

characterized by (i) the water impact against the deck, and (ii) the air-cushion phenomenon. In the following, the related

effects on a ship deck are investigated. A real FPSO unit is considered to define the relevant structural parameters. In

particular, the steel stiffeners along the selected FPSO deck are sketched in the left diagram of Fig. 12. The deck is

designed to stand against a maximum spatially uniform pressure of 60 kPa: Within the present two-dimensional

analysis, the structure in the longitudinal direction is modelled as an equivalent beam with cross-section sketched in the

center plot of Fig. 12 and length Lb ¼ 2:5 m:
It is assumed a full-scale draft of 18 m: Therefore, with the wave parameters mentioned above, the water-shipping

and the related impact is caused by incident waves with length 182 m; and height 14:55 m: The free-surface

configuration at the impact instant obtained by the numerical simulation for the equivalent two-dimensional problem is

given in the right plot of Fig. 12. From the numerical simulation, an impact velocity of 4:3 m=s is estimated. This value
is not large, and in particular is close to the orbital velocity in free-wave conditions (4:4 m=s). The free-surface shape
near the initial impact position is rather blunt, and can be approximated by a circle with radius rC0:1 m: On a larger

spatial scale, the plunging tip resembles a fluid wedge of about 20�; inclined of approximately 26� with respect to the

vertical direction.

In the same figure, the two horizontal arrows indicate the length of the first two equivalent beams adopted to model

the deck in the longitudinal direction. The impact starts close to the middle of the second one.

4.1.1. Water-impact loading

The loading evolution on the second beam b2 is characterized by (i) an acoustic phase, (ii) a blunt-impact phase and

(iii) a wedge-impact phase.

The water front at the impact instant can be approximated as a fluid circle hitting a flat wall. In the early stage,

gravity effects can be neglected and the fluid–structure interaction can be studied by a Wagner-type approach. The

corresponding model problem is sketched on the left-hand side of Fig. 13, where the main parameters involved are

reported. In particular, the ‘‘wetted length’’ c can be obtained as 2
ffiffiffiffiffiffiffi
Vrt

p
by locally approximating the initial circular

shape of the fluid with a parabola. This approach cannot be used at the very beginning of the impact, when the method

is not valid since the neglected water compressibility is important (acoustic phase), and infinite pressures are predicted.

In reality, though high, the pressure cannot exceed the acoustic pressure pac ¼ rcs;wV : Here r is the water density, cs;w is

the sound velocity in water (usually varying between 1450 and 1540 m=s), and V is the impact velocity. In the specific

case, by using the impact velocity from the numerical simulation, we can estimate the maximum value of pac as

B6:6 MPa: This is much larger than the design pressure. However since the high pressures are localized in space and

time, the effect on the structure is limited. The time duration of the acoustic phase can be estimated through the Wagner

method by imposing the maximum pressure, pmax; equal to the acoustic value, pac; and assuming the impact velocity V

remains constant during this stage, that is

r
2

d½c ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
Vtacr

p
�

dt

( )2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
pmax

¼ rVcs;w|fflfflffl{zfflfflffl}
pac

) tac ¼
r

2cs;w
: ð15Þ

This gives tacB3:3� 10�5 s for the present case. Following Korobkin (1995), an estimate of the acoustic-phase duration

is given by the condition dcgeom=dt ¼ cs;w; where cgeom is the geometric intersection of the fluid circle with the deck after

a penetration Vt: For very small times, by geometric arguments, we have cgeom ¼
ffiffiffiffiffiffiffiffiffiffi
2Vrt

p
and therefore tacB0:9�

10�7 s: These two estimates give an indication of, respectively, the upper and the lower limit of the acoustic-phase

duration tac; and show that this phase is quite short compared with the highest natural period of the equivalent beam b2;
Td ;1 ¼ 0:0156 s: Therefore, in spite of the relatively high pressure levels, this stage is not critical for the structural safety.
During the blunt-impact phase, for t > tac; a Wagner-type method can be used to find the evolution of the pressure

distribution along the deck. The duration tb:i: of this second stage can be estimated as the time interval for half-circle of

fluid to have impacted with the deck (b ¼ 90� in Fig. 13), from the end of the acoustic phase. In this case, by using the
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geometrical relationship c ¼ r sin b and the solution c ¼ 2
ffiffiffiffiffiffiffi
Vtr

p
; we find tb:i:B5:8� 10�3 s: At this time, the maximum

pressure becomes 37 kPa; which is smaller than the design pressure. The time duration of the blunt-impact phase is

larger than the acoustic-phase one, and corresponds to about 37% of the highest natural dry period Td;1 of the

equivalent beam b2: Therefore, hydroelastic effects could matter and the elastic response of the beam has to be

analyzed. In principle, a Wagner-type analysis is valid for small deadrise angles (Zhao and Faltinsen, 1993) say for

bp20�: Since here we have used this approach up to b ¼ 90� in combination with a parabolic approximation of the

impacting free surface, we can expect that tb:i: has only been roughly estimated.

During the blunt-impact phase, the spatial region of the beam directly loaded by the fluid is of order 2r ¼ 0:08Lb; and
therefore small relative to the beam length. Consistently, the beam evolution and the related stresses can be determined

by considering the simplified problem of an initially undeformed simply supported beam subjected to a spatial Dirac-

delta load, f ðtÞdðx � ximpÞ; at the initial impact position ximp: The load amplitude f ðtÞ can be estimated as the vertical

force on a rigid circle penetrating a flat free surface, Faltinsen (1990), and expressed as rCsðtÞrV2: The time dependent
coefficient Cs has been derived experimentally by Campbell and Weynberg (1980), and fitted by the formula

Cs ¼
5:15

1þ 8:5h=r
þ 0:275

h

r
:

Here h ¼ Vt is the instantaneous submergence of the circle and is equal to r when half-circle penetrated the free surface.

This means that the end of the blunt impact phase should be given by tb:i: ¼ r=VB2:44� 10�2 s which is four times the

value predicted above. This value is not based on the assumption of small deadrise angle, and it should be considered a

more realistic estimate than the previous one. The maximum stresses on the beam resulting from this analysis are

presented in the right plot of Fig. 13 and remain safely below the yield stress (about 220 MPa).

The last stage of the fluid–structure interaction under analysis can be approximated by the impact of a fluid wedge of

20� hitting asymmetrically the deck. Upon assuming a rigid deck and that the impact velocity V remains constant,

through the pressure analysis presented by Greco (2001) and based on the similarity solution from Zhang et al. (1996),

we obtain a maximum pressure of about 18 kPa: This value is below the assumed structural safety limits for the deck.
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Fig. 12. Left: example of stiffeners arrangement in a FPSO deck (top view) Center: cross-section of the equivalent beam adopted to

model the deck in the longitudinal direction. Dimensions are in millimeters. Right: numerical solution at the impact instant and its

main global geometric parameters. The two horizontal arrows b1 and b2 indicate the length of the first and second equivalent beams

along the deck, respectively.

Fig. 13. Left: Sketch of the problem of a fluid circle hitting a flat horizontal wall. Right: evolution of the maximum tension (t) and

compression (c) stresses along beam b2 by assuming a Dirac’s delta load. All quantities are given in full-scale (D ¼ 18 m).
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4.1.2. Air-cushion loading

As observed in visualization and numerical studies, for the considered set of parameters the flow field on the deck

closer to the bow is characterized by the cavity originated at the impact instant. During the evolution, the air cavity

interacts with the surrounding fluid and undergoes deformations. As a consequence, the beam b1; initially under the

action of the atmospheric pressure, suffers loads due to the compressibility of the air entrapped in the cavity. If we

assume a uniform pressure in the cavity, and we model the air evolution as the adiabatic process of an ideal gas, the

pressure pðtÞ in the cavity is related to the volume variations through

pðtÞ
p0

¼
V0

VðtÞ

� 
g

with g ¼ 1:4: ð16Þ

Here, pðtÞ andVðtÞ are the pressure and the volume at time t and p0 andV0 are the corresponding reference values, e.g.

the atmospheric pressure ðp0 ¼ 1 atmC105 PaÞ and the air volume in the cavity at the impact instant. The usual value

g ¼ 1:4 is used for the ratio of the specific heats. Any flow in the air preceding the cavity closure is neglected and Froude

scaling is assumed to transfer the data from model to full-scale conditions.

By using the above model and the digital images taken from the experiments, we have carried out an analysis to

evaluate the pressure acting on the first beam. In the sequence of Fig. 14, the post-impact evolution is shown with

snapshots separated in time by an interval of 0:38 s (full-scale). The cavity profile is not sharply detectable from the

pictures because of camera resolution limits, wetting effects of the lateral wall and perspective errors. Therefore, for

each snapshot several different curves are candidates as cavity boundary. All of them have been considered and are

reported, superimposed to the corresponding video image. From such images the cavity volume VðtÞ has been

evaluated and different results have been obtained because of the uncertainty in the determination of the cavity

boundary. The initial cavity volumeV0 has been computed from the numerical simulation of the same wave conditions.

Once the preliminary analysis has been completed, we can compute the pressure evolution inside the cavity by (16).

The circles in the bottom-right plot of Fig. 14 represent the pressure computed according to the above procedure. As

anticipated, different values at the same time instant are obtained, corresponding to different digitized cavity

boundaries. The pressure envelope (dashed lines) gives an indication of the order of magnitude of the uncertainty

involved in. The horizontal solid line is the design pressure for the deck and, according to the present analysis, this value

ARTICLE IN PRESS

Fig. 14. Air-cushion phenomenon at the bow edge induced by waves with l=D ¼ 10:1 and H=D ¼ 0:808: Snapshots 1–3: visualization
of the air-cavity evolution. Referred to the full-scale draft D ¼ 18 m; the time interval between two following frames is 0:38 s: The
digitized cavity profiles (colored lines) are superimposed to the images. Bottom right: pressure evolution inside the cavity.
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can be exceeded during the cavity evolution. Therefore, the collapse of the cavity can be critical for the strength of the

deck structure. At full scale, the time duration of the ‘‘loading cycle’’ due to the air-cushion phenomenon is order of 1 s

and it is much longer than the first dry natural period of the beam b1; Td;1C0:0156 s: This suggests that hydroelastic
effects are not relevant.

In this analysis, to define the initial conditions for full-scale draft, Froude scaling has been assumed and the influence

of viscous and surface-tension effects have been neglected. Similarly, the influence of air motion in determining the

water evolution before the cavity formation has been neglected. Another approximation in scaling the results is related

to the cavity evolution after its formation which is influenced by the Euler or cavitation number Eu ¼ ðpa � pvÞ=ðrV2Þ:
In particular, upon neglecting the role of the vapor pressure pv; we can assume that the initial air-pocket pressure is

always of the order of the ambient (atmospheric) pressure pa; while the impact velocity V of the wave front plunging

onto the deck changes according to the geometrical scale considered, and extrapolation from model scale to full scale

can be more uncertain. Dynamic effects in the cavity pressure evolution are also neglected.

In a different context Greco et al. (2003), studying the air-cushion following wave impact on the bottom of a floating

structure, numerically found that if the cavitation number is large enough, say EuBOð103Þ; then the evolution of the

entrapped cavity can be qualitatively different and the air tends to escape. For EupOð102Þ; the short-time evolution of

the air cavity is similar to that observed in the present experiments and the extrapolation to full scale seems qualitatively

plausible, though probably too conservative.

It should be finally mentioned that in three-dimensional conditions air could find ways to escape before entrapment

and cushion phenomena appear. In the recalled three-dimensional model experiments, Barcellona et al. (2003), air

entrapment has been still observed, though with more complex cavity geometries, leaving open the need of a fuller

understanding and quantitative prediction of this phenomenon.

4.2. Deck-house impact

On a longer time scale, the observed water shipping resembles a dam-break type phenomenon. That is the fluid runs

along the initially dry deck without significant overturning phenomena at the water front, and the fluid-dynamic regime

is practically of shallow-water type. During this dam-break stage, our numerical and physical experiments show that the

loading is mostly determined by the ‘hydrostatic’ pressure, since ship motions have been restrained. Actually, additional

contributions are due to three-dimensional effects and deck accelerations. This phase is not expected to be dangerous

for the deck structure although, depending on the amount of shipped water, it can be relevant for the dynamic behavior

of the ship. This issue is not addressed here.

Fig. 15 shows the evolution of the shipped water during the dam-break stage, in the absence of vertical

superstructures. In the left frame, it is visible that the air cavity, formed during the early stage of the water shipping, is

now highly deformed and left far behind the fluid front. Therefore, it is expected that the presence of air bubbles is not

influencing significantly the gross evolution of the flow field during the considered stage. Indeed, this is confirmed by the

good comparison with the numerical simulation (red lines in the figure) obtained by neglecting the entrapped air and

enforcing the ‘‘initial’’ Kutta condition. Similar agreement is found during the whole evolution, including the late stages

when the water shipping finally ceases, as reported in the right frame of Fig. 15.

On this ground, at least for the considered two-dimensional cases, we can state that the main features both of the

deck flow and of the impact flow on the superstructures are not affected by the details of the initial plunging phase. This

also implies that a potential-flow scheme without modelling of the entrapped air bubbles can give useful information

about the impact-flow stage. This is better shown in Fig. 16, where the experimental visualizations are compared with

the numerical free-surface profiles in the case of a vertical wall located at 0:2275 m from the bow of the model.

Fig. 17 provides a closer view of the water front approaching the vertical superstructure. It resembles a thin half-

wedge, left picture, and at the beginning of the impact only the small amount of the fluid sharply deviated upward is

affected by the phenomenon. A vertical jet is originated and spray formation is observed. Though the description of

spray and interface fragmentation is beyond the possibility of the present potential flow model, these details have a

limited dynamic role on the resulting loads. On the contrary, during this initial stage, even a simpler zero-gravity model

can provide a good approximation to the flow, as documented by Faltinsen et al. (2002) where the similarity solution

from Zhang et al. (1996) is extended to give the initial pressure distribution on the wall and analytical formulae for

estimating the maximum impact pressure are provided.

The pressure evolutions on the wall have been measured at three locations by piezoelectric transducers, with 3 mm

diameter. This means the evaluated pressure is an averaged value over a small area of about 7 mm2: During the tests we
adopted a sampling frequency of 200 Hz: Two pressure transducers, PG1 and PG2, are located at 0:012 m and at

0:032 m above the deck (model scale), respectively. The third transducer, PG3, is at the same height of PG1 but 0:15 m
shifted in the transverse direction. Typical pressure evolutions are reported in Fig. 18. In the same figure, the pressure
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computed numerically is also presented (thick solid line). The origin of the time scale corresponds to the time instant

when the numerical pressure at the lowest gauge location attains a nonzero value.

Left and center plots show the pressure measured by PG1 and PG2, respectively. For the former, the pressure rises

quite sharply, reaches a maximum value pmax;1; and then decreases, with some oscillations. After the minimum is

attained, a second steep increase is observed up to the peak pmax;2: The rise time of the two loading cycles as well as the

ARTICLE IN PRESS

Fig. 15. Dam break-type stage of the water shipping induced by waves with l=D ¼ 10:1 and H=D ¼ 0:808: The red lines are the

present numerical simulations and the time intervals Dtwod after the water shipping are referred to the experimental conditions,

D ¼ 0:198 m: For a full-scale draft D ¼ 18 m; the corresponding time instants from the water shipping starting, Dtwod; are 2.480 and
4:36 s; respectively.

Fig. 16. Impact of the shipped water against a vertical superstructure located at 0:2275 m from the model bow. Water shipping is

induced by waves with l=D ¼ 10:1 and H=D ¼ 0:808: Red lines are the present numerical simulations. Time increases from left to

right: time instants from the water shipping starting Dtwod ¼ 0:273; 0.313 and 0:353 s (2.603, 2.984 and 3:366 s full-scale draft

D ¼ 18 m).

Fig. 17. Water impact against a vertical wall after water shipping caused by waves (l=D ¼ 10:1 and H=D ¼ 0:808). Enlarged view of

the thin-wedge shaped water front before the impact (left) and after the impact (right).
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pressure peaks are comparable, though pmax;2opmax;1: A similar qualitative behavior is observed for the transducer

PG2, although in this case the first maximum is smaller than the second one and it is reached in a slightly longer rise

time.

The first pressure cycle is associated with the initial water impact against the superstructure. The second one is related

to the backward water overturning, shown in Fig. 7, as we found by combining the pressure measurements with the

video images. More in detail, it is connected with the impact of the backward plunging wave with the underlying mass

of water. Being of comparable order of magnitude, both loading cycles appear equally important for the structural

safety. This behavior has been confirmed by the three-dimensional model tests described by Barcellona et al. (2003),

where the pressure distribution on the deck and the horizontal fluid force on a vertical wall at its end have been

measured (cf. Fig. 21 and 22 in Barcellona et al., 2003). Clearly, in three-dimensional cases, the water can flow off the

deck and the mass involved in the backward overturning can be smaller, possibly reducing the strength of the second

loading cycle. Yet, the second pressure peak along the ship center-line was always found comparable to the first one.

The numerical prediction is rather satisfactory and recovers correctly the first pressure peak. Though the

computations could have been continued up to the backward-plunging water front impinges onto the underlying free

surface, the second pressure peak would not be numerically captured anyway because the boundary element method

cannot handle free-surface breaking. In this respect, Level Set (Colicchio et al., 2002), SPH (Colagrossi and Landrini,

2003) and VOF (Greco et al., 2002) techniques have been applied to similar problems to handle the post-breaking

evolution but further development and validation for extensive and practical use in this context are required.

We note that two test results are reported for each pressure gauge and show a not-perfect repeatability. During first

tests, variations of pressure have been found due to temperature changes induced by passing from dry to wet conditions.

This bias error has been reduced by keeping (roughly) constant the transducers temperature in between two following

tests simply by covering them with a wet towel. Yet, though qualitatively similar, pressure evolutions show some scatter.

Actually, the data comparison (right diagram in Fig. 18) for transducers PG1 and PG3 located at the same height from

the deck highlights differences of the same order of the data scatter observed from repetition tests. This observation,

supported by the flow images in Fig. 19, suggests that three-dimensional effects appearing soon after the impact are the

major responsible for the observed behavior.
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Fig. 18. Pressure evolution measured on the vertical wall under impacting conditions, at 0.012 and 0:032 m above the deck (left and

center plots, respectively). Two test results are given for each gauge location. The solid lines give the numerical results before breaking

occurs.

Fig. 19. Three-dimensional instabilities of the water front during the run up after the impact. Left: back view. Right: front view.
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Further observation of the pressure evolutions evidences some high-frequency oscillations, visible during the first

loading cycle, and possibly related to arriving air bubbles entrapped at the bow edge. In any case, the available images

and the sampling frequency adopted in pressure measurements do now allow for a better insight into these details.

4.3. Hydroelastic effects

During the most impulsive stages, if the loading time is comparable with the structural natural wet period,

hydroelasticity is excited, and for a correct structural design its effects should be assessed. In the following, the influence

of hydroelasticity during the water impact with vertical superstructures is investigated. Inflow conditions are generated

by an equivalent dam-break problem (cf. left plot of Fig. 20), and the resulting fluid–structure interaction is analyzed by

using the hydroelastic model of Section 3.4.

The sketches in Fig. 20 gives an example of typical longitudinal steel stiffeners adopted for the deck house in the bow

region of a FPSO. Attention is focused on stiffeners between decks 8 and 9 shown in the figure. This is done by using an

equivalent Euler beam, with the cross section represented in the bottom right of the same figure. The upper portion of

the deck house is assumed rigid.

Recent documented casualties for FPSO units suggest to use a freeboard exceedance of 10 m: We therefore assumed

an equivalent problem consisting in a breaking dam located at the bow section, with a water reservoir h ¼ 10 m high

and 2h long (cf. Fig. 20). Consistently with operating FPSO units, the beam representing the deck house wall is located

at ds ¼ 2:139h from the dam, with length Lb ¼ 0:311h: The lower edge is clamped, while rotations at the upper edge are
constrained by a spring with elastic constant ky:
Fig. 20 shows the initial condition and a later free-surface configuration when the water front has already impacted

with the deck house. Here and in the following, time is made nondimensional by
ffiffiffiffiffiffiffiffi
h=g

p
: For the considered initial

conditions, the impact instant is timp ¼ 1:705: The time interval for the beam to be completely wetted is about Dtimp ¼
t� timp ¼ 0:12 and is practically unaffected by the beam deformations. Also, the typical time for the total force acting

on the beam to reach its maximum value is about Dtimp ¼ 0:27; after that the force decays. Therefore, all cases treated in
the following refer to a time scale of about Dtimp ¼ 0:3 after the impact.

The numerical solution can be negatively affected by a variety of difficulties. For instance spatial and time resolutions

decrease progressively for higher-order modes. Confluence of different boundary conditions at the edges of the beam

implies locally a poorer convergence. Invariance of the solution by doubling the initial number of panels and halving

the initial time step has been verified. Fifteen modes have been found to guarantee at convergence on the most

significant modes.

A simplified analytical analysis (sketched in Fig. 21) is also performed to qualitatively verify the present results. The

water domain is approximated by a strip of fluid with constant height H; and the potential jj is due to the jth oscillation

mode with unit amplitude. The condition jj ¼ 0 is applied along the free surface. The analytical solution is found by

separation of variables and Fourier expansion technique. The height H is a free parameter, and it is chosen as follows.

In the approximate problem, it is found that the fluid further away thanB0:8Lb from the beam is practically unaffected

by the beam vibrations. Therefore, H is determined by imposing that masses of fluid involved in the approximate and

exact problems are the same, and the value H=h ¼ 0:207 has been obtained. Though there is some arbitrariness in this

procedure, the objective is to show that the numerical results behave reasonably. The table in Fig. 21 shows the ratios of

the natural wetted period Tw;j to the natural dry period Td;j by the ‘‘exact’’ and approximate problems, respectively. The

comparison, tabulated for j ¼ 1; 2; 3 and for ky ¼ 0;N; shows a reasonable agreement, which improves for the higher

modes as one can expect since their sensitivity to the fluid details is smaller.

We now discuss in more detail the results obtained by the numerical solution of the exact hydroelastic problem.

Fig. 22 shows the time evolution of the beam deformation in terms of the amplitudes zj of the first four modes for

ky ¼ 0: The evolutions of the first two modes are shown in the left diagrams, while only the late stages of the first four

modes are shown in the right plots. For j ¼ 1; 2; zj oscillates around a mean value which grows in time. The oscillation

amplitude becomes nearly constant after the beam becomes completely wetted. A similar behavior could be observed

for higher modes, though the mean value and the oscillation amplitude decrease for increasing j: In reality, structural

damping may affect higher-mode evolutions, but this effect has not been considered here.

The qualitative behavior of the solution does not change significantly by varying the parameter Ky ¼ kyLb=EI : In
particular, as Ky increases the amplitudes decrease. The influence appears minor for the higher modes which are less

sensitive to the boundary conditions. In general, the ratio Tw;j=Td ;j of natural wetted period to natural dry period

decreases as Ky increases and is smaller for higher j (see Table 1). The highest natural wetted-period Tw;1

ffiffiffiffiffiffiffiffi
g=h

p
changes

from 0.018 to 0.026 for Ky in the range ½N; 0�: Therefore, Tw;1 is small relative to typical loading time, Dtimp ¼ 0:27:
This suggests a limited role of hydroelasticity.
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Fig. 20. Left: flow impacting with a vertical flexible wall after the breaking of a dam. Sketch of the problem and nomenclature

adopted. The main parameters adopted in the simulation are Lb=h ¼ 0:311; ds=h ¼ 2:139 and h ¼ 10 m: Nondimensional time t ¼
t=

ffiffiffiffiffiffiffiffi
h=g

p
: Right: example of stiffeners of a deck house (front view on the top) and cross-section of equivalent beam. Lengths are in

millimeters.

Fig. 21. Wetted natural periods. Left: sketch of the simplified problem. Right: ratios Tw;j=Td;j obtained by the ‘‘exact’’ fully numerical

solution and by the approximate analysis for two different spring stiffness ky:
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Fig. 22. Modal amplitude as a function of time. Left: time evolution of the first two modes. Right: enlarged view of the amplitude of

the first four modes at large times after the impact.

Table 1

Ratio of natural wetted-periods to natural dry-periods for the first four modes of the beam. Ky ¼ kyLb=EI

Ky

j 0 6 24 N

1 2.74 2.73 2.67 2.67

2 2.26 2.25 2.23 2.22

3 1.93 1.93 1.88 1.88

4 1.71 1.70 1.67 1.67
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Moreover, the free-surface evolution is practically unaffected by the beam oscillations. Fig. 23 compares the free-

surface configurations in case of rigid-wall (solid lines) against the results obtained by the hydroelastic model for a

clamped–supported beam, 3: The results are graphically superimposed. An example of the instantaneous deformation of
the beam is given on the right of the same figure.

To further assess the role of hydroelasticity, the maximum stresses smax on the beam computed in the present

hydroelastic analysis are compared with those evaluated by a quasi-steady model. In the latter, a rigid structure is

considered in the solution of the hydrodynamic problem, and the resulting loads are used to compute the static

structural deformation. For the considered cases, maximum stresses are always observed at the bottom end. In

particular, the fluid-induced bending moment gives tension stresses ðtÞ in the wetted side, and compression stresses ðcÞ in
the opposite side, cf. the right plot in Fig. 24. Compression bending stresses reach larger values than tension stresses

because the cross-sectional neutral axis is closer to the wetted side. After the transient stage, the mean value of smax
becomes nearly constant and remains with an absolute value less than 220 MPa; which is smaller than the steel yield

stress. The magnitude of hydroelastic results oscillates around a mean value close to and slightly larger than the

corresponding quasi-steady value. This confirms, for the considered case, the limited role of hydroelasticity.

5. Conclusions

The bow water shipping for a two-dimensional structure in head sea and restrained from moving has been studied by

experimental and numerical means. The main stages of the flow-field evolution have been highlighted and the related

loading regimes have been addressed.

For the considered cases, it is found that water shipping starts with the fluid front plunging onto the deck and

entrapping air in cavities of complex shape and evolution. This behavior can be successfully described by a potential

flow model with a suitable Kutta-type condition at the bow edge. A simplified analysis of two-dimensional experimental

data shows that this air-cushion stage can lead to high pressure (very localized in space and time), and therefore to

possible structural damages.
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Fig. 24. Left: evolution of the maximum tension ðtÞ and compression ðcÞ stresses for ky ¼ 0: Right: sketch of the loaded beam.
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After the cavity disintegration, the following dam break-like evolution is grossly unaffected by the presence of the air

bubbles dispersed within the main bulk of water. Numerical simulations, where the presence of air bubbles has been

neglected, reproduce well the overall flow scenario and can be used to compute the initial conditions to study the impact

against deck structures.

In this context, shallow-water models may be useful although the need of boundary data may pose severe limitations

to their actual applicability, as discussed by Greco (2001). This stage is probably more relevant to the dynamics of the

vessel rather than to the strength of the deck.

The impact against vertical deck structures is finally addressed. Although the impact loads are of main importance,

laboratory measurements have shown that pressure peaks arising during the gravity-driven evolution can be of the same

order of magnitude and, therefore, of concern for design purposes. In this framework, the potential-flow modelling has

been proved reliable to simulate the flow and to predict the hydrodynamic loads at least up to breaking and

fragmentation of the free surface occur. Within the first stage, even more simplified tools have been proposed by

Faltinsen et al. (2002) which can be easily used for design and certification purposes. In the breaking regime, new

strategies of numerical simulations are under development (e.g. Greco et al., 2002; Colicchio et al., 2002; Colagrossi and

Landrini, 2003), where field methods based on either Euler or Navier–Stokes equations are used to handle free surface

fragmentation and breaking. In this context a domain decomposition (DD) strategy, to extend the analyses performed

by the boundary element method, is investigated. Within the DD, a field method with a more general treatment of the

free-surface should be introduced in domain regions where breaking and two-phase flows are observed, while the BEM

would be applied in the rest of the fluid domain. This approach would partially retain BEM advantages in terms of

efficiency and accuracy in describing free-surface flows. Further, it would be more general than the BEM in terms of

prediction of water shipping occurrence and study of the phenomenon along the whole flow evolution along the deck,

avoiding for instance the need of using different Kutta-like conditions at the edge of the deck.

Finally, the numerical model has been extended to deal with hydro-elastic problems. The method was found stable

and relatively efficient and it has been verified by using some simplified analytical solutions. Then, the impact of shipped

water against the vertical wall of a deck-house has been studied. An equivalent dam-break problem has been adopted to

generate the inflow conditions and tuned by using data of recent casualties. Structural parameters have been deduced

from a really operating FPSO unit. For the considered data set, it was shown that hydroelasticity is of minor

importance and that a quasi-steady structural analysis is enough for design purposes, leaving to the hydrodynamic

analysis the major responsibility to predict the fluid loading history.
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